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Chaos-synchronization-based multiparameter estimation of a multiply delayed feedback system is investi-
gated. We propose an adaptive method that can estimate all the parameters of the response system using the
driving signal only. In the past few years, various methods have been developed for estimation of multiparam-
eters of a chaotic system but most of them require more than one time series to estimate all the parameters of
a chaotic or hyperchaotic system. The proposed method requires only a single chaotic time series to estimate
all the parameters. A sufficient condition for synchronization is derived and it is shown that the numerical
results well support the analytic calculations. The synchronized system has applications in cryptographic
encoding for digital and analog signals, which is shown with an example.
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I. INTRODUCTION

An important issue in time series analysis of chaotic sys-
tems is the estimation of one or multiple parameters from a
single or multiple time series. Parameter estimation methods
may be broadly classified into online and offline estimation
methods. The online estimation methods, e.g., the adaptive
control approach �1�, though simple to implement, cannot be
used to estimate all the system parameters. The offline meth-
ods, e.g., the active-passive-decomposition method �2�, auto-
synchronization �3�, the error minimization strategy �2�, sta-
tistical methods �4�, and iterative methods �5�, have been
demonstrated in many publications to estimate all the system
parameters. Recently, Konnur �6� proposed online estimation
for all model parameters of a given chaotic-hyperchaotic sys-
tem using the least-squares approach. This method is more
analytical and effective but requires more than one scalar
time series to estimate all parameters of a system. Chen and
Kurths �7� proposed an observer-based approach for chaos
synchronization and parameter estimation from a scalar out-
put signal. This signal could be either a variable from
the master system or a scalar nonlinear combination of
all variables from the master system. Adaptive chaos-
synchronization-based parameter estimation was recently de-
veloped by Huang et al. �8�. Yu et al. �9� pointed out a linear
independence condition which is sufficient for parameter
identification in general dynamical systems. In the past few
years, various methods have been developed for estimation
of multiple parameters of a chaotic system and used to obtain
secure communication �8�. Some methods are analytical and
effective but most of them require more than one time series
to estimate all the parameters of a chaotic-hyperchaotic sys-
tem �2–6,10–13�. In practice this requirement increases
implementation costs. Therefore, multiparameter estimation

and multiparameter modulation for secure communication
using only a single scalar chaotic time series are still rel-
evant.

In this paper, we try to show that it is possible to estimate
more than one parameter of a chaotic system by an adaptive
method using a single chaotic time series. We use a constant
function and analog and chaotic signals as modulations of
various parameters of a chaotic system and prove that it is
possible to recover the information using a single scalar cha-
otic time series. The resulting transmitted signal consists of
information hidden in the signal from the chaotic system.

The structure of this paper is the following. In Sec. II, we
explain the synchronization phenomenon for a multidelayed
chaotic system and establish a sufficient condition for syn-
chronization using the Krasovskii-Lyapunov approach. A
scheme for multiparameter estimation is also investigated. In
Sec. III, we consider two different multidelayed Ikeda mod-
els �14–17� with modulated time delay. The numerical cal-
culations show the effectiveness of the analytical results and
examples are given for encryption and decryption of signals
from a synchronized system with the help of parameter esti-
mation. Finally, in Sec. IV we summarize our results.

II. MULTIPARAMETER ESTIMATION SCHEME

In this section, we study analytically the sufficient condi-
tion for complete synchronization between two multiple de-
layed feedback systems with modulated delay time. Consider
the chaos-synchronization-based multiparameter estimation
scheme for a multiple-delay feedback system with variable
time delays. The coupled system is of the form

ẋ = − ax + �
i=1

N

mif�x�i
� , �1�*diba.ghosh@gmail.com
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ẏ = − ay + �
i=1

N

nif�y�i
� + k�x − y� , �2�

where mi are estimated parameters, ni are free or adjustable
parameters, and k is the coupling strength. Our aim is to
devise an algorithm to adaptively adjust ni until y→x, i.e.,
both y→x and ni→mi. In this way, synchronization between
systems �1� and �2� is achieved and the parameters mi are
estimated.

We take �i, a function of time, as

�i�t� = �0 + �i sin��it�, i = 1,2, . . . ,N , �3�

where �0 is the zero-frequency component, �i are the ampli-
tudes, and �i /2� are the frequencies of the modulation.

We propose a parameter estimation algorithm as

ẋ = − ax + �
i=1

N

mif�x�i
� , �4a�

ṁi = 0, �4b�

and

ẏ = − ay + �
i=1

N

nif�y�i
� + k�x − y� , �5a�

ṅi = gi, �5b�

where gi are the adaptive functions to be determined. Next
we want to find the functions gi with the help of the
Krasovskii-Lyapunov functional approach.

Let �=x−y and ei=mi−ni be the synchronization error
and parameter error, respectively. Then the dynamics of the
error are

�̇ = − �a + k�� + �
i=1

N

nif��y�i
���t − �i� + �

i=1

N

f�x�i
�ei,

ėi = − gi.

We define a positive definite Krasovskii-Lyapunov functional
�15–17� of the form

V�t� =
1

2
�2 +

1

2�
i=1

N

ei
2 + h�t��

i=1

N �
−�i�t�

0

�2�t + ��d� .

Then

V̇�t� = ��̇ + �
i=1

N

eiėi + ḣ�t��
i=1

N �
−�i�t�

0

�2�t + ��d� + h�t�

��
i=1

N

��2 − �2�t − �i� + �2�t − �i��i��t�� .

If ḣ�t��0 for arbitrary t, then

V̇�t� � − �a + k��2 + �
i=1

N

nif��y�i
����t − �i� + h�t��2

+ �
i=1

N

�ėi + f�x�i
���ei − h�t��

i=1

N

�1 − �i���
2�t − �i� .

If we choose ėi=−f�x�i
��, i=1,2 , . . . ,N, then

V̇�t� � − �a + k − h�t���2 − h�t��
i=1

N

�1 − �i���
2�t − �i�

+ �
i=1

N

nif��y�i
����t − �i�

= − �a + k − h�t���2 +
ni

2f2��y�i
�

4h�t��1 − �i��
�2 − h�t��

i=1

N

�1 − �i��

����t − �i� −
nif��y�i

�

2h�t��1 − �i�
��2

	 − �a + k − h�t� −
1

4h�t��i=1

N ni
2f�2�y�i

�

1 − �i�
��2

= − F�h�t�,Q��2,

where Q=�i=1
N nif�

2�y�i
� / �1−�i�� and F(h�t� ,Q)=a+k−h�t�

−Q /4h�t�. In order to prove that V̇�t�	0, it is sufficient to
show that Fmin
0. This occurs for h�t�=	Q /2 with Fmin
=a+k−	Q. Finally, we get the sufficient condition for syn-
chronization as

a + k 
 ��
i=1

N 
ni

sup f�2�y�i
�


1 − �i�
�1/2

. �6�

Note that Eq. �6� is also the condition for communicating the
information messages. If Eq. �6� is satisfied then we can
transmit any finite number of information signals through a
single chaotic channel.

III. NUMERICAL SIMULATION

In this section we want to verify the analytic calculations
done in Sec. II with some numerical methods. We consider a
coupled Ikeda system �14� with one time delay as

ẋ = − ax + m1 sin x�1�t�, �7�

and

ẏ = − ay + n1�t�sin y�1�t� + k�x − y� , �8�

ṅ1�t� = �x − y�sin x�1�t�. �9�

We choose the parameter values as a=1.0, m1=4.0, �0=2.0,
�1=0.05, and �1=0.0001. Here m1=4.0 is the only estimated
parameter. From condition �6�, one can obtain the sufficient
condition for synchronization as k
2.000 005. For our nu-
merical simulation we choose k=2.01; the variation of n1�t�
and synchronization error �=x−y are shown in Fig. 1�a�.
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Here m1 is represented by the solid lines, n1�t� by the dotted
lines, and the synchronization error by the dashed line. To
check the above analytical condition for a multiple-delay
system, we consider the coupled Ikeda system with four vari-
able time delays as

ẋ = − ax + �
i=1

4

mi sin x�i�t�
, �10�

and

ẏ = − ay + �
i=1

4

ni�t�sin y�i�t�
+ k�x − y� , �11�

ṅi�t� = �x − y�sin x�i�t�
, i = 1,2,3,4. �12�

We choose the parameter values as m1=4.0, m2=2.0, m3
=1.0, m4=2.5, �1=0.05, �1=0.0001, �2=0.01, �2=0.001,
�3=0.1, �3=0.0001, �4=0.06, and �4=0.1. We take k=5.0
which satisfies the condition �6�. The corresponding param-
eter variations and their errors are shown in Fig. 1�b�. Solid,
dotted, and dashed lines are for mi, ni�t�, and x−y,
respectively.

For a ten-parameter estimation, we consider the coupled
system as

ẋ = − ax + �
i=1

10

mi sin x�i�t�
, �13�

and

ẏ = − ay + �
i=1

10

ni�t�sin y�i�t�
+ k�x − y� , �14�

ṅi�t� = �x − y�sin x�i�t�
, i = 1,2, . . . ,10. �15�

The parameters and delays are chosen as m1=4.0, m2=2.0,
m3=1.0, m4=2.5, m5=8.0, m6=5.0, m7=6.0, m8=7.0, m9
=3.5, m10=9.0, �1=0.05, �1=0.0001, �2=0.01, �2=0.001,
�3=0.1, �3=0.0001, �4=0.06, �4=0.1, �5=0.11, �5=0.3,
�6=0.23, �6=0.07, �7=0.07, �7=0.001, �8=0.08, �8
=0.02, �9=0.15, �9=0.07, �10=0.02, and �10=0.05. The
variations of the original and estimated parameters along
with the synchronization error are shown in Fig. 1�c� for
coupling k=25, which satisfies condition �6�. In this way one
can estimate multiple parameters using a single scalar cha-
otic time series just satisfying the sufficient condition �6� for
synchronization. We have numerically estimated 50 param-
eters at high coupling strength.

In the above discussion, we have shown the method of
parameter estimation using a synchronized delayed system.
Now in this part we propose an algorithm by which piece-
wise and binary messages and analog and chaotic signals can
be transmitted. The algorithm can be written as follows:

ẋ = − ax + �
i=1

N

mif�x�i
� , �16�

ẏ = − ay + �
i=1

N

nif�y�i
� + k�x − y� , �17�

ṅi =
1

�
�x − y��

i=1

N

f�x�i
� , �18�

where � is the adaptive parameter.
First we choose m1 as a digital message in the form

m1 = �
4.0, t 	 500,

5.0, 500 � t 	 1000,

4.0, 1000 � t 	 1500,

5.0, 1500 � t 	 2000.
� �19�

The value of the modulation parameter m1 is switched be-
tween 4.0 and 5.0 in the transmitter according to the nature
of the digital message. Due to this switching in the value of
the modulation parameter, the response system is driven by x
corresponding to m1=4.0, if the transmitted message bit is 0,
or by x corresponding to m1=5.0, if the transmitted message
bit is 1. The original and estimated signals and synchroniza-
tion error are shown in Fig. 2�a� by solid, dotted, and dashed
lines, respectively, for coupling k=3 and �=0.01.

Next we choose m1 as a binary message in the form
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FIG. 1. Variation of original parameter �solid lines�, estimated
parameter �dotted lines�, and synchronization error �dashed lines�
for �a� one, �b� four, and �c� ten parameters.

ADAPTIVE SCHEME FOR SYNCHRONIZATION-BASED… PHYSICAL REVIEW E 78, 056211 �2008�

056211-3



m1 = �
4.0, t 	 500,

5.0, 500 � t 	 1000,

6.0, 1000 � t 	 1500,

7.0, 1500 � t 	 2000.
� �20�

The original signal, estimated signal, and synchronization
error are shown in Fig. 2�b� for coupling k=5 and �=0.01.

We take m1 as a sinusoidal signal in the form

m1�t� = 4 + � sin��t� , �21�

where � and � are the amplitude and frequency of the signal,
respectively. The original and estimated signal and synchro-
nization error are shown in Fig. 2�c� for coupling k=5 and
�=0.005, �=2, �=0.05.

Finally, we show that it is also possible to estimate the
chaotic signals coming from a different trajectory. We choose
m1�t�, m2�t�, and m3�t� as the chaotic time series of a Lorenz
system �u̇=��v−u� , v̇=ru−v−uw , ẇ=uv−bw ,�=10,r
=28,b=8 /3�, i.e., m1�t�=u�t�, m2�t�=v�t�, and m3�t�=w�t�.
The original chaotic signals, estimated chaotic signals, and
synchronization error are shown in Figs. 3�a�–3�c� for cou-
pling k=5 and �=0.001. From the figure we can see that the
signals are well recovered even through they are complex
and chaotic in nature. In this case we have taken three dif-
ferent parameters m1, m2, m3 to estimate the chaotic signals.

IV. CONCLUSIONS

The advantages of the method are the following. �a� It is
able to estimate all parameters of a chaotic multiple-time-

delay system. �b� More than one piece of information can be
transmitted through a chaotic time series. �c� The implemen-
tation cost can be reduced. �d� The method can be easily
implemented using a simple analog circuit in practical com-
munication applications. Each of these advantages is distinct
from the existing methods �2–6,10–13�, where more than one
time series is needed to estimate multiple parameters of cha-
otic systems. In addition, the approach presented here is dif-
ferent from those techniques based on the adaptive control
approach �1�, the active-passive-decomposition method �2�,
autosynchronization �3�, the error minimization strategy �2�,
statistical methods �4�, iterative methods �5�, and the least-
squares approach �6�.

Past results indicate that the method proposed here could
be more easily applicable in experiments. The proposed
method is very applicable in experiments where only a single
output is available. The resulting systems can be easily and
inexpensively implemented using a simple analog circuit,
making this approach feasible for practical communication
applications. This is a unified treatment by which one can
transmit more than one signal �digital, sinusoidal, and cha-
otic� at a time by using only one scalar chaotic time series.
Therefore, this adaptive scheme for synchronization-based
multiple-parameter estimation provides a unified treatment
for a large class of general multiple-time-delayed systems
with modulated delay time.
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FIG. 2. Variation of synchronization error �dashed lines�, origi-
nal signal �solid lines�, and estimated signal �dotted lines� in the
form of a �a� digital message in the form �19�, �b� binary message
�20�, and �c� sinusoidal signal m1�t�=4+� sin��t�.
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